Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
Четыре одинаковых точечных заряда по 10 нКл находятся в вершинах куба на одной грани. Найти плотность энергии электростатического поля в центре противоположной грани. Площадь грани равна 100 см². Заряды находятся в керосине (ε = 2,0). Ответ должен получиться 0,78 мДж/м³
1
ответ
Для нахождения плотности энергии электростатического поля в центре противоположной грани куба, используем формулу:
\[ u = \frac{1}{2} \cdot \varepsilon \cdot E^2 \]
где \( u \) - плотность энергии электростатического поля, \( \varepsilon \) - диэлектрическая проницаемость среды, \( E \) - модуль напряженности электрического поля.
Сначала найдем модуль напряженности электрического поля в центре противоположной грани. Для этого воспользуемся принципом суперпозиции для четырех точечных зарядов:
\[ E = k \cdot \sum_{i=1}^{4} \frac{q_i}{r_i^2} \]
где \( k \) - постоянная Кулона (\( 8,99 \times 10^9 \, Н \cdot м^2 / Кл^2 \)), \( q_i \) - величина заряда, \( r_i \) - расстояние от заряда до точки, в которой ищется напряженность.
Расстояние от центра грани к центру заряда в данном случае равно половине диагонали грани куба:
\[ r = \frac{a \sqrt{2}}{2} \]
где \( a \) - длина ребра куба.
Теперь рассчитаем модуль напряженности электрического поля:
\[ E = k \cdot \frac{q}{r^2} \]
\[ E = 8,99 \times 10^9 \cdot \frac{10 \times 10^{-9}}{\left(\frac{0,1}{\sqrt{2}}\right)^2} \]
\[ E = 0,57 \, Н/Кл \]
Теперь подставим полученное значение \( E \) в формулу для плотности энергии электростатического поля:
\[ u = \frac{1}{2} \cdot 2,0 \cdot (0,57)^2 \]
\[ u \approx 0,78 \, мДж/м^3 \]
Таким образом, плотность энергии электростатического поля в центре противоположной грани куба составляет примерно 0,78 мДж/м³.
\[ u = \frac{1}{2} \cdot \varepsilon \cdot E^2 \]
где \( u \) - плотность энергии электростатического поля, \( \varepsilon \) - диэлектрическая проницаемость среды, \( E \) - модуль напряженности электрического поля.
Сначала найдем модуль напряженности электрического поля в центре противоположной грани. Для этого воспользуемся принципом суперпозиции для четырех точечных зарядов:
\[ E = k \cdot \sum_{i=1}^{4} \frac{q_i}{r_i^2} \]
где \( k \) - постоянная Кулона (\( 8,99 \times 10^9 \, Н \cdot м^2 / Кл^2 \)), \( q_i \) - величина заряда, \( r_i \) - расстояние от заряда до точки, в которой ищется напряженность.
Расстояние от центра грани к центру заряда в данном случае равно половине диагонали грани куба:
\[ r = \frac{a \sqrt{2}}{2} \]
где \( a \) - длина ребра куба.
Теперь рассчитаем модуль напряженности электрического поля:
\[ E = k \cdot \frac{q}{r^2} \]
\[ E = 8,99 \times 10^9 \cdot \frac{10 \times 10^{-9}}{\left(\frac{0,1}{\sqrt{2}}\right)^2} \]
\[ E = 0,57 \, Н/Кл \]
Теперь подставим полученное значение \( E \) в формулу для плотности энергии электростатического поля:
\[ u = \frac{1}{2} \cdot 2,0 \cdot (0,57)^2 \]
\[ u \approx 0,78 \, мДж/м^3 \]
Таким образом, плотность энергии электростатического поля в центре противоположной грани куба составляет примерно 0,78 мДж/м³.
0
·
Хороший ответ
8 сентября 2024 20:42
Остались вопросы?
Еще вопросы по категории Физика
Примеры световых явлений...
Измерьте среднюю длину своего шага. Пользуясь этой мерой, определите путь, который вы проходите от своего дома до ближайшей остановки автобуса...
Доклад про устройство термоса не менее 150 слов...
Как зависит выталкивающая сила от плотности жидкости (газа)?...
выберите какие приспособления относятся к простым механизмам. А.Ворот Б.Наклонная плоскость. 1)А 2)Б 3)А и Б 4)Ни А,ни Б...
Все предметы