Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
17 октября 2024 03:20
42
Напишите уравнение сферы с центром А, проходящей через точку
N, если: А (-1;1;0). N (-2;2;1).
1
ответ
Для того чтобы написать уравнение сферы, проходящей через точку N и с центром в точке A, нам нужно найти радиус этой сферы. Радиус сферы можно найти как расстояние между центром и любой точкой на сфере. В данном случае, мы можем использовать точку N для нахождения радиуса.
Радиус R можно найти по формуле:
R = √((x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²)
Где (x₁, y₁, z₁) - координаты центра сферы (точка A), а (x₂, y₂, z₂) - координаты точки на сфере (точка N).
Подставляем значения координат точек A и N:
R = √((-2 - (-1))² + (2 - 1)² + (1 - 0)²)
R = √((-3)² + 1² + 1²)
R = √(9 + 1 + 1)
R = √11
Теперь у нас есть радиус сферы R = √11. Уравнение сферы имеет вид:
(x - x₁)² + (y - y₁)² + (z - z₁)² = R²
Подставляем координаты центра сферы A и найденный радиус R:
(x + 1)² + (y - 1)² + z² = 11
Таким образом, уравнение сферы с центром в точке A и проходящей через точку N будет:
(x + 1)² + (y - 1)² + z² = 11
Радиус R можно найти по формуле:
R = √((x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²)
Где (x₁, y₁, z₁) - координаты центра сферы (точка A), а (x₂, y₂, z₂) - координаты точки на сфере (точка N).
Подставляем значения координат точек A и N:
R = √((-2 - (-1))² + (2 - 1)² + (1 - 0)²)
R = √((-3)² + 1² + 1²)
R = √(9 + 1 + 1)
R = √11
Теперь у нас есть радиус сферы R = √11. Уравнение сферы имеет вид:
(x - x₁)² + (y - y₁)² + (z - z₁)² = R²
Подставляем координаты центра сферы A и найденный радиус R:
(x + 1)² + (y - 1)² + z² = 11
Таким образом, уравнение сферы с центром в точке A и проходящей через точку N будет:
(x + 1)² + (y - 1)² + z² = 11
1
·
Хороший ответ
17 октября 2024 03:21
Остались вопросы?
Еще вопросы по категории Геометрия
В треугольнике 𝐴𝐵𝐶 медианы пересекаются в точке 𝑀. Через точку 𝑀 проведена прямая, параллельная стороне 𝐵𝐶 и пересекающая стороны 𝐴𝐵 и...
Дан треугольник АВС через точку О на стороне АВ и точку Р на стороне СВ проведена прямая,причем ОР паралельно АС.Докажите что треугольники АВС и ОВР п...
Найдите площадь поверхности правильной шестиугольной призмы, сторона основания которой равна 5, а высота 10 срочно ...
найти угол CDO (с обьъяснением)...
Дано изображение MNK треугольника M′N′K′, стороны которого относятся как 3 : 4 : 4 и изображение O некоторой точки O′, лежащей в плоскости треугольник...
Все предметы