Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
15 января 2025 23:05
388
Биссектриса угла D параллелограмма ABCD пересекает диагональ АС в точке К. Найдите, в каком отношении прямая ВК делит сторону CD, считая от вершины С, если АВ = 4, ВС = 9.
1
ответ
Для решения этой задачи, обратимся к свойствам биссектрисы угла параллелограмма.
Пусть точка пересечения биссектрисы угла D и диагонали АС обозначается как К. Также обозначим точку пересечения прямой ВК с стороной CD как М.
Из свойств биссектрисы угла параллелограмма следует, что отношение длин сторон параллелограмма, на которые биссектриса делит угол, равно отношению длин диагоналей, на которые она делит другие углы параллелограмма. То есть:
\[\frac{AB}{BC} = \frac{AD}{DC}\]
По условию, \(AB = 4\) и \(BC = 9\). Также из условия известно, что \(BC || AD\), поэтому \(\angle ABC = \angle ADC\).
Теперь найдем отношение длин сторон параллелограмма, на которые биссектриса делит угол D:
\[\frac{AB}{BC} = \frac{4}{9}\]
Так как \(\angle ABC = \angle ADC\), то точка К делит диагональ AC на отрезки AK и KC в том же отношении:
\[\frac{AK}{KC} = \frac{AB}{BC} = \frac{4}{9}\]
Так как \(AK + KC = AC = 13\) (так как AC - диагональ параллелограмма), то можно составить уравнение:
\[4x + 9x = 13\]
\[13x = 13\]
\[x = 1\]
Таким образом, прямая ВК делит сторону CD в отношении 1:1, то есть точка К делит сторону CD на две равные части.
Пусть точка пересечения биссектрисы угла D и диагонали АС обозначается как К. Также обозначим точку пересечения прямой ВК с стороной CD как М.
Из свойств биссектрисы угла параллелограмма следует, что отношение длин сторон параллелограмма, на которые биссектриса делит угол, равно отношению длин диагоналей, на которые она делит другие углы параллелограмма. То есть:
\[\frac{AB}{BC} = \frac{AD}{DC}\]
По условию, \(AB = 4\) и \(BC = 9\). Также из условия известно, что \(BC || AD\), поэтому \(\angle ABC = \angle ADC\).
Теперь найдем отношение длин сторон параллелограмма, на которые биссектриса делит угол D:
\[\frac{AB}{BC} = \frac{4}{9}\]
Так как \(\angle ABC = \angle ADC\), то точка К делит диагональ AC на отрезки AK и KC в том же отношении:
\[\frac{AK}{KC} = \frac{AB}{BC} = \frac{4}{9}\]
Так как \(AK + KC = AC = 13\) (так как AC - диагональ параллелограмма), то можно составить уравнение:
\[4x + 9x = 13\]
\[13x = 13\]
\[x = 1\]
Таким образом, прямая ВК делит сторону CD в отношении 1:1, то есть точка К делит сторону CD на две равные части.
0
·
Хороший ответ
15 января 2025 23:06
Остались вопросы?
Еще вопросы по категории Геометрия
Упражнение 158. Составьте предложения по схемам и запи- шите. 1. [О, о, о]. 2. [и 0, и 0, и о]. 3. [ни 0, ни 0]. 4. [то 0, то о]. 5. [О, а о]....
В треугольнике ABC проведены медиана BM и высота BH. Известно, что AC=79 и BC=BM. Найдите AH...
1)Найдите угол между двумя диагоналями , выходящими из одной и той же вершины правильного восемнадцатиугольника, если во внутренней области этого угла...
Между сторонами угла АОВ, равного 140°, проведены лучи ОС и ом так, что угол АОС на 16° меньше угла ВОС, а OM — биссектриса угла Вос. Найдите величину...
Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найдите AB, если AH=8, AC=32....