Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
15 января 2025 23:05
121
Биссектриса угла D параллелограмма ABCD пересекает диагональ АС в точке К. Найдите, в каком отношении прямая ВК делит сторону CD, считая от вершины С, если АВ = 4, ВС = 9.
1
ответ
Для решения этой задачи, обратимся к свойствам биссектрисы угла параллелограмма.
Пусть точка пересечения биссектрисы угла D и диагонали АС обозначается как К. Также обозначим точку пересечения прямой ВК с стороной CD как М.
Из свойств биссектрисы угла параллелограмма следует, что отношение длин сторон параллелограмма, на которые биссектриса делит угол, равно отношению длин диагоналей, на которые она делит другие углы параллелограмма. То есть:
\[\frac{AB}{BC} = \frac{AD}{DC}\]
По условию, \(AB = 4\) и \(BC = 9\). Также из условия известно, что \(BC || AD\), поэтому \(\angle ABC = \angle ADC\).
Теперь найдем отношение длин сторон параллелограмма, на которые биссектриса делит угол D:
\[\frac{AB}{BC} = \frac{4}{9}\]
Так как \(\angle ABC = \angle ADC\), то точка К делит диагональ AC на отрезки AK и KC в том же отношении:
\[\frac{AK}{KC} = \frac{AB}{BC} = \frac{4}{9}\]
Так как \(AK + KC = AC = 13\) (так как AC - диагональ параллелограмма), то можно составить уравнение:
\[4x + 9x = 13\]
\[13x = 13\]
\[x = 1\]
Таким образом, прямая ВК делит сторону CD в отношении 1:1, то есть точка К делит сторону CD на две равные части.
Пусть точка пересечения биссектрисы угла D и диагонали АС обозначается как К. Также обозначим точку пересечения прямой ВК с стороной CD как М.
Из свойств биссектрисы угла параллелограмма следует, что отношение длин сторон параллелограмма, на которые биссектриса делит угол, равно отношению длин диагоналей, на которые она делит другие углы параллелограмма. То есть:
\[\frac{AB}{BC} = \frac{AD}{DC}\]
По условию, \(AB = 4\) и \(BC = 9\). Также из условия известно, что \(BC || AD\), поэтому \(\angle ABC = \angle ADC\).
Теперь найдем отношение длин сторон параллелограмма, на которые биссектриса делит угол D:
\[\frac{AB}{BC} = \frac{4}{9}\]
Так как \(\angle ABC = \angle ADC\), то точка К делит диагональ AC на отрезки AK и KC в том же отношении:
\[\frac{AK}{KC} = \frac{AB}{BC} = \frac{4}{9}\]
Так как \(AK + KC = AC = 13\) (так как AC - диагональ параллелограмма), то можно составить уравнение:
\[4x + 9x = 13\]
\[13x = 13\]
\[x = 1\]
Таким образом, прямая ВК делит сторону CD в отношении 1:1, то есть точка К делит сторону CD на две равные части.
0
·
Хороший ответ
15 января 2025 23:06
Остались вопросы?
Еще вопросы по категории Геометрия
Острый угол прямоугольного треугольника равен 30градусов, а гипотенуза 8. Найдите отрезки, на которые делит гипотенузу высота, проведенная из вершины...
В правильной четирехугольной пирамиде сторона основания равна 10см, а боковое ребро наклонено к плоскости основания под углом 45°. Найдите объем пира...
Углы ∠DEF и ∠MEF-смежные Луч EK-биссектриса ∠DEF; ∠KEF на 78° меньше (∠ MEF) Найти ∠ DEF и ∠MEF...
Найдите углы правильного 18 угольника...
В прямоугольном треугольнике угол между высотой и медианой, проведенными из вершины прямого угла, равен 32 градуса. Найдите больший из острых углов эт...