Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
15 января 2025 23:05
111
Биссектриса угла D параллелограмма ABCD пересекает диагональ АС в точке К. Найдите, в каком отношении прямая ВК делит сторону CD, считая от вершины С, если АВ = 4, ВС = 9.
1
ответ
Для решения этой задачи, обратимся к свойствам биссектрисы угла параллелограмма.
Пусть точка пересечения биссектрисы угла D и диагонали АС обозначается как К. Также обозначим точку пересечения прямой ВК с стороной CD как М.
Из свойств биссектрисы угла параллелограмма следует, что отношение длин сторон параллелограмма, на которые биссектриса делит угол, равно отношению длин диагоналей, на которые она делит другие углы параллелограмма. То есть:
\[\frac{AB}{BC} = \frac{AD}{DC}\]
По условию, \(AB = 4\) и \(BC = 9\). Также из условия известно, что \(BC || AD\), поэтому \(\angle ABC = \angle ADC\).
Теперь найдем отношение длин сторон параллелограмма, на которые биссектриса делит угол D:
\[\frac{AB}{BC} = \frac{4}{9}\]
Так как \(\angle ABC = \angle ADC\), то точка К делит диагональ AC на отрезки AK и KC в том же отношении:
\[\frac{AK}{KC} = \frac{AB}{BC} = \frac{4}{9}\]
Так как \(AK + KC = AC = 13\) (так как AC - диагональ параллелограмма), то можно составить уравнение:
\[4x + 9x = 13\]
\[13x = 13\]
\[x = 1\]
Таким образом, прямая ВК делит сторону CD в отношении 1:1, то есть точка К делит сторону CD на две равные части.
Пусть точка пересечения биссектрисы угла D и диагонали АС обозначается как К. Также обозначим точку пересечения прямой ВК с стороной CD как М.
Из свойств биссектрисы угла параллелограмма следует, что отношение длин сторон параллелограмма, на которые биссектриса делит угол, равно отношению длин диагоналей, на которые она делит другие углы параллелограмма. То есть:
\[\frac{AB}{BC} = \frac{AD}{DC}\]
По условию, \(AB = 4\) и \(BC = 9\). Также из условия известно, что \(BC || AD\), поэтому \(\angle ABC = \angle ADC\).
Теперь найдем отношение длин сторон параллелограмма, на которые биссектриса делит угол D:
\[\frac{AB}{BC} = \frac{4}{9}\]
Так как \(\angle ABC = \angle ADC\), то точка К делит диагональ AC на отрезки AK и KC в том же отношении:
\[\frac{AK}{KC} = \frac{AB}{BC} = \frac{4}{9}\]
Так как \(AK + KC = AC = 13\) (так как AC - диагональ параллелограмма), то можно составить уравнение:
\[4x + 9x = 13\]
\[13x = 13\]
\[x = 1\]
Таким образом, прямая ВК делит сторону CD в отношении 1:1, то есть точка К делит сторону CD на две равные части.
0
·
Хороший ответ
15 января 2025 23:06
Остались вопросы?
Еще вопросы по категории Геометрия
сторона правильного четырехугольника, вписанного в некоторую окружность, равна 2. найти сторону правильного треугольника, описанного около этой окружн...
Доказать, что NK || AC, MN || BC...
Обчислить: 1) 4 cos 90° + 2 cos 180° - tg 180°; 2) cos 0° - cos 180° + sin 90°....
В выпуклом четырёхугольнике ABCD известны стороны и диагональ: AB= 6, BC=CD= 10, AD= 16, AC= 14. а) Докажи, что вокруг этого четырёхугольника можно...
Дан куб АВСДА1В1С1Д1.а) докажите, что прямая ВД1 перпендикулярна плоскости АСВ1. б) Найдите угол между плоскостями АД1С1 и А1Д1С...