Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
23 января 2025 08:46
181
- Окружность S, вписанная в равнобедренный треугольник АВС , касается боковых сторон АВ и ВС соответственно в точках К и L, и касается основания АС в точке М. Отрезок AL пересекает окружность S в точке N .
Докажите, что прямая KN проходит через середину отрезка АМ
1
ответ
Для начала обозначим середину отрезка AM как P.
Заметим, что по условию задачи треугольник ABC равнобедренный, следовательно, у него равны углы при вершинах A и C. Также, так как S - вписанная окружность, то углы при вершинах B и N равны.
Рассмотрим треугольники KNA и LNA. У них общий угол ANK, а также равны углы ANL и NAK, так как это углы касательных к окружности.
Из равенства углов следует, что треугольники KNA и LNA подобны. Значит, соответствующие стороны относятся как стороны треугольников. То есть, KN/AL = AN/NL.
Также, по теореме о касательных, отрезки AN и AM равны. Следовательно, AN = AM.
Подставим это в наше равенство: KN/AL = AM/NL.
Так как P - середина отрезка AM, то AM = 2*AP. Подставляем это: KN/AL = 2*AP/NL.
Теперь заметим, что треугольники APM и NPL подобны, так как у них равны углы PAM и PLN (они соответственные), а также углы при вершине P равны. Значит, соответствующие стороны относятся как стороны треугольников: AP/PL = AM/NL.
Подставляем это в наше равенство: KN/AL = 2*AP/NL = 2*(AP/PL) = 2.
Таким образом, KN = 2*PL. Но мы знаем, что P - середина отрезка AM, следовательно, PL = 0.5*AM. Подставляем: KN = 2*0.5*AM = AM.
Таким образом, прямая KN проходит через середину отрезка AM.
Заметим, что по условию задачи треугольник ABC равнобедренный, следовательно, у него равны углы при вершинах A и C. Также, так как S - вписанная окружность, то углы при вершинах B и N равны.
Рассмотрим треугольники KNA и LNA. У них общий угол ANK, а также равны углы ANL и NAK, так как это углы касательных к окружности.
Из равенства углов следует, что треугольники KNA и LNA подобны. Значит, соответствующие стороны относятся как стороны треугольников. То есть, KN/AL = AN/NL.
Также, по теореме о касательных, отрезки AN и AM равны. Следовательно, AN = AM.
Подставим это в наше равенство: KN/AL = AM/NL.
Так как P - середина отрезка AM, то AM = 2*AP. Подставляем это: KN/AL = 2*AP/NL.
Теперь заметим, что треугольники APM и NPL подобны, так как у них равны углы PAM и PLN (они соответственные), а также углы при вершине P равны. Значит, соответствующие стороны относятся как стороны треугольников: AP/PL = AM/NL.
Подставляем это в наше равенство: KN/AL = 2*AP/NL = 2*(AP/PL) = 2.
Таким образом, KN = 2*PL. Но мы знаем, что P - середина отрезка AM, следовательно, PL = 0.5*AM. Подставляем: KN = 2*0.5*AM = AM.
Таким образом, прямая KN проходит через середину отрезка AM.
0
·
Хороший ответ
23 января 2025 08:48
Остались вопросы?
Еще вопросы по категории Геометрия
Треугольник LMN, вписанный в окружность, делит её на три дуги. Вычисли угол LON и углы треугольникаLMN, если даны два центральных угла: ∢MOL=140° и ∢N...
Решить задачу По данным на рисунке найдите ∠KLO, если ∠KOL=47∘, а прямая KL является касательной к окружности. Ответ дайт...
Отрезок CD биссектриса треугольника ABC. BC = 18 см, BD = 9 см и AD = 6 см. Найди длину AC....
1 . Боковое ребро прямой призмы равно 10 см , а ее объем - 200 см3 . Основание призмы - равнобокая трапеция с основаниями 2 и 8 см . Найдите полную по...
Правильный треугольник вписан в окружность радиуса 5 см. Определите радиус окружности,вписанной в этот треуг-к....