Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
23 января 2025 08:46
96
- Окружность S, вписанная в равнобедренный треугольник АВС , касается боковых сторон АВ и ВС соответственно в точках К и L, и касается основания АС в точке М. Отрезок AL пересекает окружность S в точке N .
Докажите, что прямая KN проходит через середину отрезка АМ
1
ответ
Для начала обозначим середину отрезка AM как P.
Заметим, что по условию задачи треугольник ABC равнобедренный, следовательно, у него равны углы при вершинах A и C. Также, так как S - вписанная окружность, то углы при вершинах B и N равны.
Рассмотрим треугольники KNA и LNA. У них общий угол ANK, а также равны углы ANL и NAK, так как это углы касательных к окружности.
Из равенства углов следует, что треугольники KNA и LNA подобны. Значит, соответствующие стороны относятся как стороны треугольников. То есть, KN/AL = AN/NL.
Также, по теореме о касательных, отрезки AN и AM равны. Следовательно, AN = AM.
Подставим это в наше равенство: KN/AL = AM/NL.
Так как P - середина отрезка AM, то AM = 2*AP. Подставляем это: KN/AL = 2*AP/NL.
Теперь заметим, что треугольники APM и NPL подобны, так как у них равны углы PAM и PLN (они соответственные), а также углы при вершине P равны. Значит, соответствующие стороны относятся как стороны треугольников: AP/PL = AM/NL.
Подставляем это в наше равенство: KN/AL = 2*AP/NL = 2*(AP/PL) = 2.
Таким образом, KN = 2*PL. Но мы знаем, что P - середина отрезка AM, следовательно, PL = 0.5*AM. Подставляем: KN = 2*0.5*AM = AM.
Таким образом, прямая KN проходит через середину отрезка AM.
Заметим, что по условию задачи треугольник ABC равнобедренный, следовательно, у него равны углы при вершинах A и C. Также, так как S - вписанная окружность, то углы при вершинах B и N равны.
Рассмотрим треугольники KNA и LNA. У них общий угол ANK, а также равны углы ANL и NAK, так как это углы касательных к окружности.
Из равенства углов следует, что треугольники KNA и LNA подобны. Значит, соответствующие стороны относятся как стороны треугольников. То есть, KN/AL = AN/NL.
Также, по теореме о касательных, отрезки AN и AM равны. Следовательно, AN = AM.
Подставим это в наше равенство: KN/AL = AM/NL.
Так как P - середина отрезка AM, то AM = 2*AP. Подставляем это: KN/AL = 2*AP/NL.
Теперь заметим, что треугольники APM и NPL подобны, так как у них равны углы PAM и PLN (они соответственные), а также углы при вершине P равны. Значит, соответствующие стороны относятся как стороны треугольников: AP/PL = AM/NL.
Подставляем это в наше равенство: KN/AL = 2*AP/NL = 2*(AP/PL) = 2.
Таким образом, KN = 2*PL. Но мы знаем, что P - середина отрезка AM, следовательно, PL = 0.5*AM. Подставляем: KN = 2*0.5*AM = AM.
Таким образом, прямая KN проходит через середину отрезка AM.
0
·
Хороший ответ
23 января 2025 08:48
Остались вопросы?
Еще вопросы по категории Геометрия
В треугольнике MNK проведены высоты КА, NC и МВ, пересекающиеся в точке О. Найдите отрезок NO, если CK = 15 см, ОС = 8 см, AN = 5 см....
Найдите углы четырехугольника, если три его угла пропорциональны числам 4,5 и 7, четвертый угол равен их полусумме. Является ли этот четырехугольник в...
в прямоугольной трапеции ABCD с основаниями AD и bc диагональ bd равна 18 , а угол A равен 45 грдаусам . найдите бОльшую боковую сторону , если меньше...
какие из следуйщих утверждений верны. 1)если расстояние между центрами двух окружностей больше суммы их диаметров то эти окружности не имеют общих точ...
Найдите острый угол параллелограмма если сумма трех углов равна 232°...