Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
30 ноября 2022 06:24
1328
Основанием прямого параллелепипеда ABCDA1B1C1D1 является параллелограмм ABCD, стороны которого равны а и 2а, острый угол равен 45°. Высота параллелепипеда равна меньшей высоте параллелограмма. Найдите: а) меньшую высоту параллелограмма; б) угол между плоскостью АВС1 и плоскостью основания; в) площадь боковой поверхности параллелепипеда; г) площадь поверхности параллелепипеда.
1
ответ
Основанием прямого параллелепипеда ABCDA₁B₁C₁D₁ является
параллелограмм ABCD, стороны которого равны а и 2а, острый
угол равен 45°. Высота параллелепипеда равна меньшей высоте
параллелограмма. Найдите:
а) меньшую высоту параллелограмма;
б) угол между плоскостью АВС₁ и плоскостью основания;
в) площадь боковой поверхности параллелепипеда;
г) площадь поверхности параллелепипеда.
--------
Пусть в параллелограмме ABCD, стороны которого равны а и 2а,
сторона АВ=СD=а и
ВС=АD=2а
1) меньшая высота параллелограмма идет из вершины тупого угла
D к большей стороне ВС и отрезает от него равнобедренный
прямоугольный треугольник с катетами
DН=СН=СD*sin(45°)=(а√2):2=а/√2
Найдя меньшую высоту основания, мы нашли высоту
параллелепипеда, равную ей по условию.
СС₁=DН=а/√2
2) Угол между плоскостью АВС1 и плоскостью основания:
. Проведем из С1 перпендикуляр к продолжению АВ и точку пересечения обозначим Е.
По теореме о 3-х перпендикулярах
С₁Е ⊥ АЕ.
Угол СЕC₁ - искомый.
Так как тупой угол параллелограмма ABCD равен 180°-45°=135°,
∠ СВЕ=45° ( еще и потому, что эти углы накрестлежащие при пересечении параллельных СD и ВА секущей СВ).
Отсюда
СЕ=ВЕ=СВ*sin(45°)=2а*(√2):2=а√2
tg ∠CЕC₁=СС₁:СЕ=а/√2):(а√2)=1/2
∠ СЕC₁=arctg 1/2 ,
3) Площадь боковой поверхности параллелепипеда равна произведению его высоты на периметр основания.
Sбок=2*(а+2а)*СС1=6а*а/√2=3а²√2
4) Площадь поверхности параллелепипеда равна сумме площади боковой поверхности и удвоенной площади основания ( т.к. оснований два).
Удвоенная площадь основания
2S осн=2*BC*СD*sin(45°) =2*2a*а*(√2):2=4a²(√2):2= 2a²√2
Sполн=3а²√2+2a²√2=5а²√2
---
[email protected]
параллелограмм ABCD, стороны которого равны а и 2а, острый
угол равен 45°. Высота параллелепипеда равна меньшей высоте
параллелограмма. Найдите:
а) меньшую высоту параллелограмма;
б) угол между плоскостью АВС₁ и плоскостью основания;
в) площадь боковой поверхности параллелепипеда;
г) площадь поверхности параллелепипеда.
--------
Пусть в параллелограмме ABCD, стороны которого равны а и 2а,
сторона АВ=СD=а и
ВС=АD=2а
1) меньшая высота параллелограмма идет из вершины тупого угла
D к большей стороне ВС и отрезает от него равнобедренный
прямоугольный треугольник с катетами
DН=СН=СD*sin(45°)=(а√2):2=а/√2
Найдя меньшую высоту основания, мы нашли высоту
параллелепипеда, равную ей по условию.
СС₁=DН=а/√2
2) Угол между плоскостью АВС1 и плоскостью основания:
. Проведем из С1 перпендикуляр к продолжению АВ и точку пересечения обозначим Е.
По теореме о 3-х перпендикулярах
С₁Е ⊥ АЕ.
Угол СЕC₁ - искомый.
Так как тупой угол параллелограмма ABCD равен 180°-45°=135°,
∠ СВЕ=45° ( еще и потому, что эти углы накрестлежащие при пересечении параллельных СD и ВА секущей СВ).
Отсюда
СЕ=ВЕ=СВ*sin(45°)=2а*(√2):2=а√2
tg ∠CЕC₁=СС₁:СЕ=а/√2):(а√2)=1/2
∠ СЕC₁=arctg 1/2 ,
3) Площадь боковой поверхности параллелепипеда равна произведению его высоты на периметр основания.
Sбок=2*(а+2а)*СС1=6а*а/√2=3а²√2
4) Площадь поверхности параллелепипеда равна сумме площади боковой поверхности и удвоенной площади основания ( т.к. оснований два).
Удвоенная площадь основания
2S осн=2*BC*СD*sin(45°) =2*2a*а*(√2):2=4a²(√2):2= 2a²√2
Sполн=3а²√2+2a²√2=5а²√2
---
[email protected]

0
·
Хороший ответ
2 декабря 2022 06:24
Остались вопросы?
Еще вопросы по категории Геометрия
помогите умоляю...
Площадь наибольшего диагонального сечения правильной шестиугольной призмы равна 10. Найдите площадь боковой поверхности этой призмы....
ДАЮ 10 БАЛЛОВ!!! покажите, что прямая содержащая середины двух параллельных хорд, проходит через центр окружности...
Высота цилиндра равна 10 дм. Площадь сечения цилиндра плос¬костью, параллельной оси цилиндра и удаленной на 9 дм от нее, равна 240 дм2. Найдите радиус...
в прямоугольном треугольнике гипотенуза равна 41 см а один из катетов 9см ,найдите периметр треугольника...