Лучшие помощники
30 ноября 2022 07:01
23768

1) Радиус шара равен 17 см. Найдите площадь сечения шара, удалённого от его центра на 15 см.

1 ответ
Посмотреть ответы
Ответ: 64π см²

Объяснение:
Сечение шара - круг.
О - центр шара, С - центр сечения.
Отрезок, соединяющий центр шара с центром сечения, перпендикулярен плоскости сечения, поэтому
ОС = 15 см - расстояние от центра шара до сечения.
ОА = 17 см - радиус шара.
ΔАОС: ∠АСО = 90°, по теореме Пифагора
АС = √(ОА² - ОС²) = √(17² - 15²) = √(289 - 225) = √64 = 8 см
Площадь сечения:
S = πr², где r = АС - радиус сечения.
S = π · 8² = 64π см²
image
0
·
Хороший ответ
2 декабря 2022 07:01
Остались вопросы?
Найти нужный