Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
14 декабря 2022 18:29
825
Отрезок АВ, концы которого лежат на арзных окружностях оснований цилиндра, пересекает ось цилиндра под углом 30 градусов. Найти объем цилиндра, если отрезок АВ = 4 корня из 3
1
ответ
Т.к. отрезок АВ пересекает ось цилиндра, они лежат в одной плоскости. Осевое сечение цилиндра на рисунке.
ΔКОВ = ΔНОА по катету и прилежащему острому углу (KB = AH = r, ∠КОВ = ∠НОА как вертикальные) ⇒ КО = ОН, АО = ОВ = АВ/2 = 2√3
ΔКОВ:
∠ОКВ = 90°, КВ = ОВ/2 = √3 как катет, лежащий напротив угла в 30°.
r = √3
ОК = ОВ·cos30° = 2√3·√3/2= 3 ⇒ KH = 6
h = 6 высота цилиндра
V = Sосн · h = πr²·h = π · 3 · 6 = 18π
ΔКОВ = ΔНОА по катету и прилежащему острому углу (KB = AH = r, ∠КОВ = ∠НОА как вертикальные) ⇒ КО = ОН, АО = ОВ = АВ/2 = 2√3
ΔКОВ:
∠ОКВ = 90°, КВ = ОВ/2 = √3 как катет, лежащий напротив угла в 30°.
r = √3
ОК = ОВ·cos30° = 2√3·√3/2= 3 ⇒ KH = 6
h = 6 высота цилиндра
V = Sосн · h = πr²·h = π · 3 · 6 = 18π

0
·
Хороший ответ
16 декабря 2022 18:29
Остались вопросы?
Еще вопросы по категории Геометрия
Вычислите синусы,косинусы и тангенсы углов 120 градусов,135 градусов и 150 градусов...
В треугольнике abc угол C равен 90 градусов,AB=10,BC=8.НАЙДИТЕ:cos b...
Имеется торт в виде четырехугольной призмы с размерами 80x80x120 см. Сколько крема потребуется чтобы обмазать торт, если на 1 см2 уходит 50 грамм крем...
Осевым сечением цилиндра является квадрат, площадь которого равна 144 см^2 . Вычислите площадь боковой поверхности цилиндра...
Высота прямоугольного треугольника, проведенная к гипотенузе, равна 6 см и делит гипотенузу на отрезки, длины которых относятся как 4:1. Найдите гипот...