Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
15 декабря 2022 21:53
562
Отрезок АВ, концы которого лежат на арзных окружностях оснований цилиндра, пересекает ось цилиндра под углом 30 градусов. Найти объем цилиндра, если отрезок АВ = 4 корня из 3
1
ответ
Т.к. отрезок АВ пересекает ось цилиндра, они лежат в одной плоскости. Осевое сечение цилиндра на рисунке.
ΔКОВ = ΔНОА по катету и прилежащему острому углу (KB = AH = r, ∠КОВ = ∠НОА как вертикальные) ⇒ КО = ОН, АО = ОВ = АВ/2 = 2√3
ΔКОВ:
∠ОКВ = 90°, КВ = ОВ/2 = √3 как катет, лежащий напротив угла в 30°.
r = √3
ОК = ОВ·cos30° = 2√3·√3/2= 3 ⇒ KH = 6
h = 6 высота цилиндра
V = Sосн · h = πr²·h = π · 3 · 6 = 18π
ΔКОВ = ΔНОА по катету и прилежащему острому углу (KB = AH = r, ∠КОВ = ∠НОА как вертикальные) ⇒ КО = ОН, АО = ОВ = АВ/2 = 2√3
ΔКОВ:
∠ОКВ = 90°, КВ = ОВ/2 = √3 как катет, лежащий напротив угла в 30°.
r = √3
ОК = ОВ·cos30° = 2√3·√3/2= 3 ⇒ KH = 6
h = 6 высота цилиндра
V = Sосн · h = πr²·h = π · 3 · 6 = 18π

0
·
Хороший ответ
17 декабря 2022 21:53
Остались вопросы?
Еще вопросы по категории Геометрия
)Сторона ромба равна 9,а расстояние от точки пересечения диагоналей ромба до нее равно 1 Найдите площадь ромба...
Сформулируйте и докажите теорему о вычислении площади параллелограмма....
Сформулируйте и докажите теорему, выражающую второй признак подобия треугольников. помогите...
Какие прямые называются скрещивающимися?...
Между сторонами угла АОВ, равного 120 градусов, взята точка С. Найдите градусную меру угла АОС, если разность углов АОС и СОВ составляет 1/6 их суммы....