Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
15 декабря 2022 23:16
846
в основании прямой призмы авса1в1с1 лежит прямоугольный треугольник авс, угол с=90 гр, ас=4, вс=3, через ас и вершину в1 проведена плоскость, угол в1ас=60 гр. найдите площадь боковой поверхности призмы Помоогите
1
ответ
Ответ: 12√39 (ед. площади)
Объяснение:
Прямоугольный треугольник с катетами 3 и 4 - египетский, его гипотенуза 5 ( проверьте по т.Пифагора).
Проекция ВС наклонной В1С перпендикулярна СА. По т. о 3-х перпендикулярах В1С⊥СА. Треугольник В1СА - прямоугольный с углом В1АС=60°. В1С=АС•tg60°=4√3. Т.к. призма прямая, боковые ребра перпендикулярны основаниям, поэтому треугольник В1ВС прямоугольный. По т. Пифагора В1В=√(B1C²-BC²)=√[(4√3)²-3²]=√39
Боковое ребро прямой призмы является её высотой, а её боковые грани - прямоугольники.
Площадь боковой поверхности призмы находят умножением её высоты на периметр основания.
S(бок)=В1В•(АВ+ВС+АС)=√39•12=12√39 (ед. площади)
Объяснение:
Прямоугольный треугольник с катетами 3 и 4 - египетский, его гипотенуза 5 ( проверьте по т.Пифагора).
Проекция ВС наклонной В1С перпендикулярна СА. По т. о 3-х перпендикулярах В1С⊥СА. Треугольник В1СА - прямоугольный с углом В1АС=60°. В1С=АС•tg60°=4√3. Т.к. призма прямая, боковые ребра перпендикулярны основаниям, поэтому треугольник В1ВС прямоугольный. По т. Пифагора В1В=√(B1C²-BC²)=√[(4√3)²-3²]=√39
Боковое ребро прямой призмы является её высотой, а её боковые грани - прямоугольники.
Площадь боковой поверхности призмы находят умножением её высоты на периметр основания.
S(бок)=В1В•(АВ+ВС+АС)=√39•12=12√39 (ед. площади)

0
·
Хороший ответ
17 декабря 2022 23:16
Остались вопросы?
Еще вопросы по категории Геометрия
В прямоугольном треугольнике медиана, проведённая к гипотенузе, равна 15 дм. Чему равна гипотенуза?...
Из точки D, которая лежит вне плоскости α, проведены к этой плоскости наклонные DK и DB, образующие с ней углы 45° и 60° соответственно. Найдите длину...
В выпуклом четырёхугольнике ABCD известно что AB=BC AD=CD B=44 градусов D=128 градусов найдите угол A запишите решения и ответ...
Площадь прямоугольного треугольника равна 32√3. Один из острых углов равен 30˚. Найдите длину гипотенузы....
Найдите площадь и периметр ромба если его диагонали равны 8 и 10...