Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
15 декабря 2022 23:16
788
в основании прямой призмы авса1в1с1 лежит прямоугольный треугольник авс, угол с=90 гр, ас=4, вс=3, через ас и вершину в1 проведена плоскость, угол в1ас=60 гр. найдите площадь боковой поверхности призмы Помоогите
1
ответ
Ответ: 12√39 (ед. площади)
Объяснение:
Прямоугольный треугольник с катетами 3 и 4 - египетский, его гипотенуза 5 ( проверьте по т.Пифагора).
Проекция ВС наклонной В1С перпендикулярна СА. По т. о 3-х перпендикулярах В1С⊥СА. Треугольник В1СА - прямоугольный с углом В1АС=60°. В1С=АС•tg60°=4√3. Т.к. призма прямая, боковые ребра перпендикулярны основаниям, поэтому треугольник В1ВС прямоугольный. По т. Пифагора В1В=√(B1C²-BC²)=√[(4√3)²-3²]=√39
Боковое ребро прямой призмы является её высотой, а её боковые грани - прямоугольники.
Площадь боковой поверхности призмы находят умножением её высоты на периметр основания.
S(бок)=В1В•(АВ+ВС+АС)=√39•12=12√39 (ед. площади)
Объяснение:
Прямоугольный треугольник с катетами 3 и 4 - египетский, его гипотенуза 5 ( проверьте по т.Пифагора).
Проекция ВС наклонной В1С перпендикулярна СА. По т. о 3-х перпендикулярах В1С⊥СА. Треугольник В1СА - прямоугольный с углом В1АС=60°. В1С=АС•tg60°=4√3. Т.к. призма прямая, боковые ребра перпендикулярны основаниям, поэтому треугольник В1ВС прямоугольный. По т. Пифагора В1В=√(B1C²-BC²)=√[(4√3)²-3²]=√39
Боковое ребро прямой призмы является её высотой, а её боковые грани - прямоугольники.
Площадь боковой поверхности призмы находят умножением её высоты на периметр основания.
S(бок)=В1В•(АВ+ВС+АС)=√39•12=12√39 (ед. площади)

0
·
Хороший ответ
17 декабря 2022 23:16
Остались вопросы?
Еще вопросы по категории Геометрия
В треугольнике ABC проведена медиана BM, отрезки MK || AB( K принаждлежит BC), KN || AC(N принадлежит AB). Найдите периметр четырёхугольника ANKC, есл...
Чему равняется sin 60 градусов?...
Найдите площадь прямоугольника , если его периметр равен 44 и одна сторона на 2 больше другой ....
Дано: угол С=90 градусов, угол А=60 градусов. АВ+Ас=42см. Найти гипотенузу. Рисунок есть...
ABCDA1B1C1D1 – параллелепипед. Изобразите на рисунке векторы, равные: 1) DA+CD+B1B+AB ; 2) DB-AB1 . СПАСИБО...