Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
27 декабря 2022 12:59
745
Найдите углы трапеции. нужно хотя бы 5 заданий! помогите пожалуйста((

1
ответ
1. Сумма углов, прилежащих к боковой стороне трапеции, равна 180°, следовательно
∠В = 180° - 70° = 110°
∠С = 180° - 50° = 130°
2. Трапеция равнобедренная, значит углы при основаниях равны:
∠М = ∠F = 100°
∠E = ∠N = 180° - 100° = 80°
3. Сумма углов, прилежащих к боковой стороне трапеции, равна 180°, следовательно
∠Р = 180° - 75° = 105°
∠S = 180° - 100° = 80°
4. Трапеция прямоугольная, значит
∠F = ∠E = 90°
∠M = 180° - 65° = 115°
5. ∠KLN = ∠MNL = 30° как накрест лежащие при пересечении параллельных KL и MN секущей NL,
ΔNKL равнобедренный, значит углы при основании равны:
∠KNL = ∠KLN = 30°, ⇒ в трапеции
∠N = 60°, ∠M = ∠N = 60°как углы при основании равнобедренной трапеции,
∠K = ∠L = 180° - 60° = 120° (прилежащие к боковой стороне, см. 1)
6. ΔFMK: ∠M = 90°, ∠F = 35°, ⇒∠K = 90° - 35° = 55°
Трапеция равнобедренная, значит в ней:
∠F = ∠K = 55°
∠R = ∠M = 180° - 55° = 125°
7. ΔACD: ∠C = 90°, ∠B = 60°, ⇒ ∠A = 30°
∠BCA = ∠DAC = 30° как накрест лежащие при пересечении параллельных BC и AD секущей AC,
ΔBCA равнобедренный, ⇒
∠ВАС = ∠ВСА = 30°.
Значит ∠BAD = 30° · 2 = 60°. ⇒ трапеция равнобедренная.
В трапеции ∠В = ∠С = 180° - 60° = 120°
8. Трапеция прямоугольная,
∠S = ∠M = 90°.
ΔMRK - равнобедренный, ∠RMK = ∠RKM = (180° - 50°)/2 = 65°
В трапеции ∠К = 65°, тогда
∠R = 180° - 65° = 115° как прилежащие к боковой стороне.
9. Трапеция прямоугольная,
∠Р = ∠Т = 90°.
Из треугольника LPT ∠Т = 90° - 55° = 35°, тогда
∠LTO = ∠LOT = 90° - 35° = 55°
В трапеции ∠L = 180° - 55° = 125°
10. ΔNEM = ΔMFN по гипотенузе и катету (MN - общая, EN = FM), ⇒
∠FNM = ∠EMN и ΔOMN - равнобедренный. (О - точка пересечения диагоналей)
∠OMN = ∠ONM = (180° - 120°)/2 = 30°
ΔENM: ∠E = 90°, ∠M = 30°, ⇒ ∠N = 60°
Трапеция равнобедренная, значит в ней:
∠M = ∠N = 60°
∠E = ∠F = 180° - 60° = 120°
∠В = 180° - 70° = 110°
∠С = 180° - 50° = 130°
2. Трапеция равнобедренная, значит углы при основаниях равны:
∠М = ∠F = 100°
∠E = ∠N = 180° - 100° = 80°
3. Сумма углов, прилежащих к боковой стороне трапеции, равна 180°, следовательно
∠Р = 180° - 75° = 105°
∠S = 180° - 100° = 80°
4. Трапеция прямоугольная, значит
∠F = ∠E = 90°
∠M = 180° - 65° = 115°
5. ∠KLN = ∠MNL = 30° как накрест лежащие при пересечении параллельных KL и MN секущей NL,
ΔNKL равнобедренный, значит углы при основании равны:
∠KNL = ∠KLN = 30°, ⇒ в трапеции
∠N = 60°, ∠M = ∠N = 60°как углы при основании равнобедренной трапеции,
∠K = ∠L = 180° - 60° = 120° (прилежащие к боковой стороне, см. 1)
6. ΔFMK: ∠M = 90°, ∠F = 35°, ⇒∠K = 90° - 35° = 55°
Трапеция равнобедренная, значит в ней:
∠F = ∠K = 55°
∠R = ∠M = 180° - 55° = 125°
7. ΔACD: ∠C = 90°, ∠B = 60°, ⇒ ∠A = 30°
∠BCA = ∠DAC = 30° как накрест лежащие при пересечении параллельных BC и AD секущей AC,
ΔBCA равнобедренный, ⇒
∠ВАС = ∠ВСА = 30°.
Значит ∠BAD = 30° · 2 = 60°. ⇒ трапеция равнобедренная.
В трапеции ∠В = ∠С = 180° - 60° = 120°
8. Трапеция прямоугольная,
∠S = ∠M = 90°.
ΔMRK - равнобедренный, ∠RMK = ∠RKM = (180° - 50°)/2 = 65°
В трапеции ∠К = 65°, тогда
∠R = 180° - 65° = 115° как прилежащие к боковой стороне.
9. Трапеция прямоугольная,
∠Р = ∠Т = 90°.
Из треугольника LPT ∠Т = 90° - 55° = 35°, тогда
∠LTO = ∠LOT = 90° - 35° = 55°
В трапеции ∠L = 180° - 55° = 125°
10. ΔNEM = ΔMFN по гипотенузе и катету (MN - общая, EN = FM), ⇒
∠FNM = ∠EMN и ΔOMN - равнобедренный. (О - точка пересечения диагоналей)
∠OMN = ∠ONM = (180° - 120°)/2 = 30°
ΔENM: ∠E = 90°, ∠M = 30°, ⇒ ∠N = 60°
Трапеция равнобедренная, значит в ней:
∠M = ∠N = 60°
∠E = ∠F = 180° - 60° = 120°
0
·
Хороший ответ
29 декабря 2022 12:59
Остались вопросы?
Еще вопросы по категории Геометрия
В правильной четырехугольной пирамиде Sabcd сторона основания равна 4 см, боковое ребро 5 см. Найти: а) Плошадь родной поверхности пирамиды б) Объём...
Дано <ABE=<CBE Найти x Помогите пожалуйста...
Укажите номера верных утверждений. Помогите! ...
Через каждую из двух скрещивающихся прямых можно провести плоскость так, чтобы эти плоскости были параллельны. Доказать...
Через любые две различные точки плоскости можно провести не более одной окружности?...