Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для решения задачи нам нужно знать формулу для объема пирамиды:
V = (1/3) * S * h,
где S - площадь основания пирамиды, h - высота пирамиды.
Найдем сначала площадь основания пирамиды. Для прямоугольного треугольника с гипотенузой с и острым углом а (альфа) площадь равна:
S = (1/2) * a * b,
где a и b - катеты прямоугольного треугольника. Мы знаем гипотенузу с, поэтому можем выразить катеты:
a = c * sin(α),
b = c * cos(α).
Теперь найдем высоту пирамиды. Для этого нам нужно найти косинус угла ß (бэта):
cos(ß) = h / c,
откуда
h = c * cos(ß).
Теперь мы можем подставить найденные значения в формулу для объема пирамиды:
V = (1/3) * (1/2) * c * sin(α) * c * cos(α) * c * cos(ß) = (1/6) * c^3 * sin(α) * cos(α) * cos(ß).
Таким образом, объем пирамиды равен (1/6) * c^3 * sin(α) * cos(α) * cos(ß).
V = (1/3) * S * h,
где S - площадь основания пирамиды, h - высота пирамиды.
Найдем сначала площадь основания пирамиды. Для прямоугольного треугольника с гипотенузой с и острым углом а (альфа) площадь равна:
S = (1/2) * a * b,
где a и b - катеты прямоугольного треугольника. Мы знаем гипотенузу с, поэтому можем выразить катеты:
a = c * sin(α),
b = c * cos(α).
Теперь найдем высоту пирамиды. Для этого нам нужно найти косинус угла ß (бэта):
cos(ß) = h / c,
откуда
h = c * cos(ß).
Теперь мы можем подставить найденные значения в формулу для объема пирамиды:
V = (1/3) * (1/2) * c * sin(α) * c * cos(α) * c * cos(ß) = (1/6) * c^3 * sin(α) * cos(α) * cos(ß).
Таким образом, объем пирамиды равен (1/6) * c^3 * sin(α) * cos(α) * cos(ß).
0
·
Хороший ответ
3 апреля 2023 21:27
Остались вопросы?
Еще вопросы по категории Геометрия
Периметр прямоугольника равен 62 см , а точка пересечения диагоналей удалена от одной из его сторон на 12 см.Найдите длину диагонали прямоугольника...
Какое из следующих утверждений верно? 1.Две окружности пересекаются если радиус одной окружности больше радиуса другой окружности 2.Существует прямоуг...
Как найти sin а, зная cos a?...
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 4:3, считая от вершины. Найдите периметр треугольника, если длина ст...
Высота правильной шестиугольной пирамиды равна 12 см . а боковое ребро 13 см найдите площадь боковой поверхности пирамиды...