Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
Для начала найдем скалярное произведение векторов b и c:
b · c = (6m - n) · (m + 3n) = 6m · m + 6m · 3n - n · m - n · 3n = 6|m|^2 + 15mn - |n|^2 = 6 - 1 = 5
Здесь мы использовали то, что m ⊥ n и |m| = |n| = 1, поэтому м · n = 0 и |m|^2 = |n|^2 = 1.
Теперь найдем длины векторов b и c:
|b| = √(6^2 + (-1)^2) = √(36 + 1) = √37
|c| = √(1^2 + 3^2) = √10
Так как косинус угла между векторами b и c определяется как cos(α) = (b · c) / (|b| |c|), то
cos(α) = (b · c) / (|b| |c|) = 5 / (√37 √10) = (5√370) / 370
Итак, косинус угла между векторами b и c равен (5√370) / 370.
b · c = (6m - n) · (m + 3n) = 6m · m + 6m · 3n - n · m - n · 3n = 6|m|^2 + 15mn - |n|^2 = 6 - 1 = 5
Здесь мы использовали то, что m ⊥ n и |m| = |n| = 1, поэтому м · n = 0 и |m|^2 = |n|^2 = 1.
Теперь найдем длины векторов b и c:
|b| = √(6^2 + (-1)^2) = √(36 + 1) = √37
|c| = √(1^2 + 3^2) = √10
Так как косинус угла между векторами b и c определяется как cos(α) = (b · c) / (|b| |c|), то
cos(α) = (b · c) / (|b| |c|) = 5 / (√37 √10) = (5√370) / 370
Итак, косинус угла между векторами b и c равен (5√370) / 370.
0
·
Хороший ответ
11 апреля 2023 11:32
Остались вопросы?
Еще вопросы по категории Геометрия
На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH=2, BH=8. Найдите CH....
В выпуклом четырёхугольнике ABCD известно что AB=BC AD=CD B=44 градусов D=128 градусов найдите угол A запишите решения и ответ...
Угол между биссектрисой угла и продолжением одной из его сторон равен 124 градуса. Найдите данный угол. Решите пожалуйста ! Срочно !...
Диагонали ромба равны 10 и 12см. найдите его площадь и периметр....
Через вершину А ромба АВСD проведена прямая АМ не лежащая в плоскости ромба. Доказать, что прямая ВС параллельна (МАD). Напишите подробное решение и р...
Все предметы