Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
1 апреля 2023 23:23
622
Дано: треугольник ABC , BC=6, Найти:P треугольника men
2
ответа
Решение:
АВ = ВС × 2 = 6 × 2 = 12 (катет лежащий против угла в 30° равен половине гипотинузы)
По теореме Пифагора
ВС² + АС² = АВ²
36 + АС² = 144
АС² = 144 - 36
АС = √108
АС = 6√3
NM, EM и EN - средние линии => стороны образовавшегося ими треугольника равны половинам сторон данного треугольника (по свойству)
Р = 3 + 6 + 3√3 = 9 + 3√3
Ответ: Р = 9 + 3√3
АВ = ВС × 2 = 6 × 2 = 12 (катет лежащий против угла в 30° равен половине гипотинузы)
По теореме Пифагора
ВС² + АС² = АВ²
36 + АС² = 144
АС² = 144 - 36
АС = √108
АС = 6√3
NM, EM и EN - средние линии => стороны образовавшегося ими треугольника равны половинам сторон данного треугольника (по свойству)
Р = 3 + 6 + 3√3 = 9 + 3√3
Ответ: Р = 9 + 3√3
0
·
Хороший ответ
3 апреля 2023 23:23
В треугольнике АВС:
АВ = 2ВС = 2*6 = 12 (катет, лежащий против угла 30° равен половине гипотенузы)
АС = √(12²-6²) = √108 = 6√3
Р(АВС) = АВ + ВС +АС = 12 + 6 + 6√3 = 18 + 6√3
EN, EM и MN являются средними линиями треугольника АВС по условию, следовательно
Р(МEN) = P(ABC)/2 = (18+6√3)/2 = (2(9+3√3))/2 = 9 + 3√3
Ответ: 9 + 3√3
АВ = 2ВС = 2*6 = 12 (катет, лежащий против угла 30° равен половине гипотенузы)
АС = √(12²-6²) = √108 = 6√3
Р(АВС) = АВ + ВС +АС = 12 + 6 + 6√3 = 18 + 6√3
EN, EM и MN являются средними линиями треугольника АВС по условию, следовательно
Р(МEN) = P(ABC)/2 = (18+6√3)/2 = (2(9+3√3))/2 = 9 + 3√3
Ответ: 9 + 3√3
0
3 апреля 2023 23:23
Остались вопросы?
Еще вопросы по категории Геометрия
айдите площадь треугольника, ограниченного прямыми Зх+2у=6 и y=-9/4 x и осью ординат....
Осевое сечение конуса – правильный треугольник со стороной 20. Найти площадь сечения, проведённого через две образующие конуса, угол между которыми ра...
Найдите объем прямой призмы abca1b1c1 если угол ab1c=60 градусов ab1=3, cb1=2...
Как найти катеты зная гипотенузу и площадь?Всем спасибо!...
Найдите длину отрезка АВ и координаты точки О-его середины, если А(-2;4) и В(4;10)....
Все предметы