Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 03:33
1415
Высота равностороннего треугольника 3см. Найдите радиус описанной около него окружности и радиус вписанной в него окружности.С ЧЕРТЕЖОМ И ПРАВИЛЬНО
2
ответа
Постаралась все объяснить, чтобы вы понимали о чем идет речь

0
·
Хороший ответ
4 апреля 2023 03:33
Центр вписанной в треугольник окружности находится в точке пересечении биссектрис треугольника.
Центр описанной окружности находится в точке пересечения срединных перпендикуляров к сторонам треугольника.
Любая точка на биссектрисе равноудалена от сторон угла, в котором она проведена. Точка пересечения биссектрис углов треугольника равноудалена от всех трех его сторон. Биссектриса равностороннего треугольника является и его высотой и медианой.
Так как медианы любого треугольника делятся точкой пересечения в отношении 2:1,
а высоты равностороннего треугольника являются срединными перпендикулярами к его сторонам,
радиус описанной окружности равен расстоянию от точки пересечения высот до вершин треугольника и равен, 2/3 высоты,
а вписанной - расстоянию от точки пересечения биссектрис до сторон треугольника и равен 1/3 высоты правильного треугольника.
Радиус вписанной в данный треугольник окружности равен 3:3= 1см.
Радиус описанной вокруг данного треугольника окружности равен (3:3)*2 см Радиус вписанной окружности в равносторонний треугольник равен одной трети высоты, а радиус описанной - двум третям. Значит, радиус вписанной 1 см, описанной - 2 см.
-----------------------------------
Для решения задачи чертеж не нужен. Но раз учитель требует, даю и чертеж и подробное решение.
Центр описанной окружности находится в точке пересечения срединных перпендикуляров к сторонам треугольника.
Любая точка на биссектрисе равноудалена от сторон угла, в котором она проведена. Точка пересечения биссектрис углов треугольника равноудалена от всех трех его сторон. Биссектриса равностороннего треугольника является и его высотой и медианой.
Так как медианы любого треугольника делятся точкой пересечения в отношении 2:1,
а высоты равностороннего треугольника являются срединными перпендикулярами к его сторонам,
радиус описанной окружности равен расстоянию от точки пересечения высот до вершин треугольника и равен, 2/3 высоты,
а вписанной - расстоянию от точки пересечения биссектрис до сторон треугольника и равен 1/3 высоты правильного треугольника.
Радиус вписанной в данный треугольник окружности равен 3:3= 1см.
Радиус описанной вокруг данного треугольника окружности равен (3:3)*2 см Радиус вписанной окружности в равносторонний треугольник равен одной трети высоты, а радиус описанной - двум третям. Значит, радиус вписанной 1 см, описанной - 2 см.
-----------------------------------
Для решения задачи чертеж не нужен. Но раз учитель требует, даю и чертеж и подробное решение.

0
4 апреля 2023 03:33
Остались вопросы?
Еще вопросы по категории Геометрия
Укажите равные векторы . MNKB - прямоугольник ....
Найдите боковую сторону равнобедренного треугольника, если его основание равно 20, а угол при основании равен 30°. Пожалуйста помогите 1)10/√3. 2)10√3...
На рисунке 64 точка О — центр окружности, MON=56°. Найдите угол MKN....
Отрезок AB не пересекает плоскость альфа . Расстояния от точек A и B до плоскости равны 31 см и 6 см. Точка C∈AB, AC:CB=2:3. Найдите расстояние от точ...
В ромбе ABCD угол D= 140 градусов. Определите углы треугольника AOD (O-точка пересечения диагоналей)....