Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
2 апреля 2023 03:33
1264
Высота равностороннего треугольника 3см. Найдите радиус описанной около него окружности и радиус вписанной в него окружности.С ЧЕРТЕЖОМ И ПРАВИЛЬНО
2
ответа
Постаралась все объяснить, чтобы вы понимали о чем идет речь

0
·
Хороший ответ
4 апреля 2023 03:33
Центр вписанной в треугольник окружности находится в точке пересечении биссектрис треугольника.
Центр описанной окружности находится в точке пересечения срединных перпендикуляров к сторонам треугольника.
Любая точка на биссектрисе равноудалена от сторон угла, в котором она проведена. Точка пересечения биссектрис углов треугольника равноудалена от всех трех его сторон. Биссектриса равностороннего треугольника является и его высотой и медианой.
Так как медианы любого треугольника делятся точкой пересечения в отношении 2:1,
а высоты равностороннего треугольника являются срединными перпендикулярами к его сторонам,
радиус описанной окружности равен расстоянию от точки пересечения высот до вершин треугольника и равен, 2/3 высоты,
а вписанной - расстоянию от точки пересечения биссектрис до сторон треугольника и равен 1/3 высоты правильного треугольника.
Радиус вписанной в данный треугольник окружности равен 3:3= 1см.
Радиус описанной вокруг данного треугольника окружности равен (3:3)*2 см Радиус вписанной окружности в равносторонний треугольник равен одной трети высоты, а радиус описанной - двум третям. Значит, радиус вписанной 1 см, описанной - 2 см.
-----------------------------------
Для решения задачи чертеж не нужен. Но раз учитель требует, даю и чертеж и подробное решение.
Центр описанной окружности находится в точке пересечения срединных перпендикуляров к сторонам треугольника.
Любая точка на биссектрисе равноудалена от сторон угла, в котором она проведена. Точка пересечения биссектрис углов треугольника равноудалена от всех трех его сторон. Биссектриса равностороннего треугольника является и его высотой и медианой.
Так как медианы любого треугольника делятся точкой пересечения в отношении 2:1,
а высоты равностороннего треугольника являются срединными перпендикулярами к его сторонам,
радиус описанной окружности равен расстоянию от точки пересечения высот до вершин треугольника и равен, 2/3 высоты,
а вписанной - расстоянию от точки пересечения биссектрис до сторон треугольника и равен 1/3 высоты правильного треугольника.
Радиус вписанной в данный треугольник окружности равен 3:3= 1см.
Радиус описанной вокруг данного треугольника окружности равен (3:3)*2 см Радиус вписанной окружности в равносторонний треугольник равен одной трети высоты, а радиус описанной - двум третям. Значит, радиус вписанной 1 см, описанной - 2 см.
-----------------------------------
Для решения задачи чертеж не нужен. Но раз учитель требует, даю и чертеж и подробное решение.

0
4 апреля 2023 03:33
Остались вопросы?
Еще вопросы по категории Геометрия
4. Осевое сечение усеченного конуса - равнобедренная трапеция, острый угол которой равен 60°, диагональ - 25 см и средняя линия - 24 см. Найдите площа...
Правильная шестиугольная пирамида , высота которой равна 35см , а сторона основания 5 см, пересечена плоскостью , параллельной основанию . Найти расст...
Площадь параллелограмма MNKL равна 388 м2. Точка - середина стороны LK. Найди площадь треугольника MLQ....
Вообще геометрию не понимаю (( Объясните как решать задачи ( Я в 7 классе )...
Чем отличается пирамида от тетраидэра простым языком (не пишите ответы с вики или с ответы маил ру)...