Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
Одним из примеров явления дисперсии может быть опыт с измерением массы нескольких одинаковых предметов. Допустим, у нас есть 10 монет одного достоинства, и мы хотим определить их среднюю массу. Мы можем взвесить каждую монету и записать ее массу. Однако, если мы проведем этот опыт несколько раз, то мы можем заметить, что результаты каждого измерения будут немного отличаться друг от друга.
Например, при первом измерении мы получили следующие результаты:
Монета 1: 2.5 г
Монета 2: 2.4 г
Монета 3: 2.6 г
Монета 4: 2.5 г
Монета 5: 2.4 г
Монета 6: 2.6 г
Монета 7: 2.5 г
Монета 8: 2.6 г
Монета 9: 2.4 г
Монета 10: 2.5 г
Средняя масса монеты в этом случае будет равна:
(2.5 + 2.4 + 2.6 + 2.5 + 2.4 + 2.6 + 2.5 + 2.6 + 2.4 + 2.5) / 10 = 2.52 г
Однако, если мы повторим этот опыт еще несколько раз, то мы можем получить следующие результаты:
Опыт 2:
Монета 1: 2.4 г
Монета 2: 2.5 г
Монета 3: 2.6 г
Монета 4: 2.5 г
Монета 5: 2.4 г
Монета 6: 2.6 г
Монета 7: 2.5 г
Монета 8: 2.6 г
Монета 9: 2.4 г
Монета 10: 2.5 г
Средняя масса монеты в этом случае будет равна:
(2.4 + 2.5 + 2.6 + 2.5 + 2.4 + 2.6 + 2.5 + 2.6 + 2.4 + 2.5) / 10 = 2.52 г
Опыт 3:
Монета 1: 2.6 г
Монета 2: 2.5 г
Монета 3: 2.4 г
Монета 4: 2.6 г
Монета 5: 2.5 г
Монета 6: 2.4 г
Монета 7: 2.6 г
Монета 8: 2.4 г
Монета 9: 2.5 г
Монета 10: 2.6 г
Средняя масса монеты в этом случае будет равна:
(2.6 + 2.5 + 2.4 + 2.6 + 2.5 + 2.4 + 2.6 + 2.4 + 2.5 + 2.6) / 10 = 2.52 г
Мы можем заметить, что средняя масса монеты в каждом из опытов равна 2.52 г, но каждый раз мы получали немного разные результаты. Это явление называется дисперсией и означает, что результаты измерений неоднородны и имеют некоторую степень разброса.
Например, при первом измерении мы получили следующие результаты:
Монета 1: 2.5 г
Монета 2: 2.4 г
Монета 3: 2.6 г
Монета 4: 2.5 г
Монета 5: 2.4 г
Монета 6: 2.6 г
Монета 7: 2.5 г
Монета 8: 2.6 г
Монета 9: 2.4 г
Монета 10: 2.5 г
Средняя масса монеты в этом случае будет равна:
(2.5 + 2.4 + 2.6 + 2.5 + 2.4 + 2.6 + 2.5 + 2.6 + 2.4 + 2.5) / 10 = 2.52 г
Однако, если мы повторим этот опыт еще несколько раз, то мы можем получить следующие результаты:
Опыт 2:
Монета 1: 2.4 г
Монета 2: 2.5 г
Монета 3: 2.6 г
Монета 4: 2.5 г
Монета 5: 2.4 г
Монета 6: 2.6 г
Монета 7: 2.5 г
Монета 8: 2.6 г
Монета 9: 2.4 г
Монета 10: 2.5 г
Средняя масса монеты в этом случае будет равна:
(2.4 + 2.5 + 2.6 + 2.5 + 2.4 + 2.6 + 2.5 + 2.6 + 2.4 + 2.5) / 10 = 2.52 г
Опыт 3:
Монета 1: 2.6 г
Монета 2: 2.5 г
Монета 3: 2.4 г
Монета 4: 2.6 г
Монета 5: 2.5 г
Монета 6: 2.4 г
Монета 7: 2.6 г
Монета 8: 2.4 г
Монета 9: 2.5 г
Монета 10: 2.6 г
Средняя масса монеты в этом случае будет равна:
(2.6 + 2.5 + 2.4 + 2.6 + 2.5 + 2.4 + 2.6 + 2.4 + 2.5 + 2.6) / 10 = 2.52 г
Мы можем заметить, что средняя масса монеты в каждом из опытов равна 2.52 г, но каждый раз мы получали немного разные результаты. Это явление называется дисперсией и означает, что результаты измерений неоднородны и имеют некоторую степень разброса.
0
·
Хороший ответ
9 апреля 2023 19:02
Остались вопросы?
Еще вопросы по категории Физика
ДАЮ 80 БАЛЛОВ. Абсолютные показатели преломления воды, стекла и алмаза равны 1.33, 1.5, 2.42. В каком из этих веществ угол полного отражения при выход...
Слитки золота, олова и алюминия имеют одинаковые массы. Полости в слитках отсутствуют. Определи соотношение между объёмами слитков, если плотности мат...
Какая из ламп загорится первой при замыкании ключа? Какая будет гореть дольше при размыкании ключа?...
Garmonik tebranishlarning boshlang'ich fazasi nolga teng. Muvozanat holatdan boshlanganda siljish x1 = 2,4 cm bo'lganda tezlik v1 = 3cm/s ga teng, s...
На рисунке 24 изображен лежащий на доске камень. Сделайте в тетради такой же рисунок и изобразите стрелочками две силы, которые по третьему закону Нь...