Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для решения этой задачи можно использовать теорему Пифагора и тригонометрические соотношения.
Пусть длина стороны прямоугольника основания равна а, а угол между этой стороной и диагональю равен α. Тогда длина диагонали равна √(a^2 + a^2) = a√2. Рисуем пирамиду:
```
A
/|\
/ | \
/ | \
/ |h \
/____|____\
B a√2/2 B
```
где A и B - вершины пирамиды, h - высота пирамиды, a√2/2 - половина длины диагонали.
Найдем угол между боковым ребром и плоскостью основания. Он равен 90° - β. Тогда с помощью тригонометрических соотношений можно найти длину высоты боковой грани:
sin(90° - β) = cos(β) = h / (a/2)
h = (a/2) * cos(β)
Теперь можно найти площадь боковой поверхности пирамиды, умножив длину бокового ребра на периметр основания и поделив на 2:
Sб = a * p / 2 = a * 2a + 2a * tan(α) / 2 = 2a^2 + a^2 * tan(α)
Наконец, площадь основания равна a^2, а общая площадь поверхности пирамиды можно найти, сложив площадь основания и боковую поверхность:
S = a^2 + Sб = a^2 + 2a^2 + a^2 * tan(α) = 3a^2 + a^2 * tan(α)
Таким образом, площадь основания равна a^2, а высоту пирамиды можно найти, подставив найденное значение h в теорему Пифагора:
h^2 = (a/2)^2 + (a√2/2)^2
h = a/2 * √(1 + 2) = a/2 * √3
Итак, площадь основания равна a^2, а высота пирамиды равна a/2 * √3.
Пусть длина стороны прямоугольника основания равна а, а угол между этой стороной и диагональю равен α. Тогда длина диагонали равна √(a^2 + a^2) = a√2. Рисуем пирамиду:
```
A
/|\
/ | \
/ | \
/ |h \
/____|____\
B a√2/2 B
```
где A и B - вершины пирамиды, h - высота пирамиды, a√2/2 - половина длины диагонали.
Найдем угол между боковым ребром и плоскостью основания. Он равен 90° - β. Тогда с помощью тригонометрических соотношений можно найти длину высоты боковой грани:
sin(90° - β) = cos(β) = h / (a/2)
h = (a/2) * cos(β)
Теперь можно найти площадь боковой поверхности пирамиды, умножив длину бокового ребра на периметр основания и поделив на 2:
Sб = a * p / 2 = a * 2a + 2a * tan(α) / 2 = 2a^2 + a^2 * tan(α)
Наконец, площадь основания равна a^2, а общая площадь поверхности пирамиды можно найти, сложив площадь основания и боковую поверхность:
S = a^2 + Sб = a^2 + 2a^2 + a^2 * tan(α) = 3a^2 + a^2 * tan(α)
Таким образом, площадь основания равна a^2, а высоту пирамиды можно найти, подставив найденное значение h в теорему Пифагора:
h^2 = (a/2)^2 + (a√2/2)^2
h = a/2 * √(1 + 2) = a/2 * √3
Итак, площадь основания равна a^2, а высота пирамиды равна a/2 * √3.
1
·
Хороший ответ
18 апреля 2023 08:01
Остались вопросы?
Еще вопросы по категории Геометрия
На рисунке 64 точка О — центр окружности, MON=56°. Найдите угол MKN....
1.Угол DCL = 126(градусов),CM - биссектриса этого угла.Найти угол MCL 2.Найдите длины отрезков BP и DP,если BD = 18 см и отрезок DP на 4 см больше отр...
Дан прямоугольный треугольник. Известны 2 катета: 17 и 1 см. Чему равны углы этого треугольника?...
сторона правильного четырехугольника, вписанного в некоторую окружность, равна 2. найти сторону правильного треугольника, описанного около этой окружн...
1) Радиус шара равен 17 см. Найдите площадь сечения шара, удалённого от его центра на 15 см....