Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
Для нахождения суммы первых четырех членов геометрической прогрессии с первым членом b1=1 и знаменателем q=-1/2, можно воспользоваться формулой:
S4 = b1 * (1 - q^4) / (1 - q)
Подставляем известные значения:
S4 = 1 * (1 - (-1/2)^4) / (1 - (-1/2))
S4 = 1 * (1 - 1/16) / (3/2)
S4 = 15/32
Ответ: S4 = 15/32.
S4 = b1 * (1 - q^4) / (1 - q)
Подставляем известные значения:
S4 = 1 * (1 - (-1/2)^4) / (1 - (-1/2))
S4 = 1 * (1 - 1/16) / (3/2)
S4 = 15/32
Ответ: S4 = 15/32.
0
·
Хороший ответ
24 апреля 2023 08:12
Остались вопросы?
Еще вопросы по категории Геометрия
Назовите признак параллельности двух прямых...
.высота конуса равна 6см , угол при вершине осевого сечения равен 90 градусов.найдите площадь боковой поверхности конуса....
Найдите радиус окружности, вписанной в треугольник со сторонами 15, 24 и 15 см....
Как найти катеты зная гипотенузу и площадь?Всем спасибо!...
Доказать что AB= BC...