Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для нахождения суммы первых четырех членов геометрической прогрессии с первым членом b1=1 и знаменателем q=-1/2, можно воспользоваться формулой:
S4 = b1 * (1 - q^4) / (1 - q)
Подставляем известные значения:
S4 = 1 * (1 - (-1/2)^4) / (1 - (-1/2))
S4 = 1 * (1 - 1/16) / (3/2)
S4 = 15/32
Ответ: S4 = 15/32.
S4 = b1 * (1 - q^4) / (1 - q)
Подставляем известные значения:
S4 = 1 * (1 - (-1/2)^4) / (1 - (-1/2))
S4 = 1 * (1 - 1/16) / (3/2)
S4 = 15/32
Ответ: S4 = 15/32.
0
·
Хороший ответ
24 апреля 2023 08:12
Остались вопросы?
Еще вопросы по категории Геометрия
высота проведенная из прямого угла прямоугольного треугольника делит гипотенузу на отрезки меньший из которых равен 11 найдите гипотенузу если отношен...
В треугольнике ABC угол C равен 90 градусов ,а угол B равен 70 градусов.На катете AC отложен отрезок CD равный CB.Найдите углы треугольника ABD с рису...
Что такой прилежащий катет...
Аксиомы стереометрии и следствия из них...
В прямоугольном треугольнике медиана, проведённая к гипотенузе, равна 15 дм. Чему равна гипотенуза?...