Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для нахождения суммы первых четырех членов геометрической прогрессии с первым членом b1=1 и знаменателем q=-1/2, можно воспользоваться формулой:
S4 = b1 * (1 - q^4) / (1 - q)
Подставляем известные значения:
S4 = 1 * (1 - (-1/2)^4) / (1 - (-1/2))
S4 = 1 * (1 - 1/16) / (3/2)
S4 = 15/32
Ответ: S4 = 15/32.
S4 = b1 * (1 - q^4) / (1 - q)
Подставляем известные значения:
S4 = 1 * (1 - (-1/2)^4) / (1 - (-1/2))
S4 = 1 * (1 - 1/16) / (3/2)
S4 = 15/32
Ответ: S4 = 15/32.
0
·
Хороший ответ
24 апреля 2023 08:12
Остались вопросы?
Еще вопросы по категории Геометрия
Имеет ли решение данная задача? Я считаю условие изначально не верно. Найти периметр равнобедренной трапеции, основания 10 и 15 см, угол А 60 градусов...
В треугольнике АВС известно, что АВ=ВС, Угол АВС=124. найдите Угол ВСА. ответ дайте в градусах...
найдите высоту прямоугольного треугольника проведенную из вершины прямого угла если она делит гипотенузу на отрезки длиной 9 и 25 см...
Какое из следующих утверждений верно? 1) Площадь параллелограмма равна половине произведения его диагоналей. 2) Сумма углов прямоугольного треугольник...
Назовите все пары скрещивающихся ребер тетраэдра ABCD...