Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
Для решения этой задачи нам нужно использовать формулу для объема цилиндра:
V = πr^2h,
где V - объем, r - радиус, h - высота.
Мы знаем, что радиус цилиндра в 2 раза больше высоты, то есть r = 2h. Подставляя это значение в формулу для объема, получаем:
864 = π(2h)^2h
864 = 4πh^3
h^3 = 216/π
h = (216/π)^(1/3)
Теперь мы можем найти радиус:
r = 2h = 2(216/π)^(1/3)
И, наконец, площадь боковой поверхности цилиндра равна:
Sб = 2πrh = 2π(2h)(h) = 4πh^2
Подставляя значение h, получаем:
Sб = 4π[(216/π)^(1/3)]^2 = 4π(216/π)^(2/3) ≈ 590.9 см^2.
Ответ: площадь боковой поверхности цилиндра составляет примерно 590.9 см^2.
V = πr^2h,
где V - объем, r - радиус, h - высота.
Мы знаем, что радиус цилиндра в 2 раза больше высоты, то есть r = 2h. Подставляя это значение в формулу для объема, получаем:
864 = π(2h)^2h
864 = 4πh^3
h^3 = 216/π
h = (216/π)^(1/3)
Теперь мы можем найти радиус:
r = 2h = 2(216/π)^(1/3)
И, наконец, площадь боковой поверхности цилиндра равна:
Sб = 2πrh = 2π(2h)(h) = 4πh^2
Подставляя значение h, получаем:
Sб = 4π[(216/π)^(1/3)]^2 = 4π(216/π)^(2/3) ≈ 590.9 см^2.
Ответ: площадь боковой поверхности цилиндра составляет примерно 590.9 см^2.
1
·
Хороший ответ
26 апреля 2023 16:57
Остались вопросы?
Еще вопросы по категории Геометрия
В равнобедренном треугольнике MPK стороны MP и PK равны, угол К=40 градусов, MK=9 см. Из вершины P проведена биссектриса PH. Постройте чертёж. Найдите...
Высота цилиндра равна 10 дм. Площадь сечения цилиндра плос¬костью, параллельной оси цилиндра и удаленной на 9 дм от нее, равна 240 дм2. Найдите радиус...
Сторона равностороннего треугольника равна 14 корень 3 см. Найдите высоту этого треугольника....
Найдите площадь полной поверхности правильной треугольной пирамиды, если ее апофема 4 см, а угол между апофемой и высотой пирамиды равен 30(градусов)....
8 класс Самостоятельная работа Вариант 2 Тема: «Признаки подобия треугольников» 1) Дано: А=50˚, С=60˚, С1=60˚, В1=70˚. Доказать: ΔАВС ΔА1В1С...