Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для нахождения объема правильной четырехугольной пирамиды с апофемой 16 см и углом 30° между апофемой и плоскостью основания, мы можем воспользоваться формулой для объема пирамиды:
V = (1/3) * S * h,
где S - площадь основания пирамиды, h - высота пирамиды.
Для правильной четырехугольной пирамиды с апофемой 16 см и углом 30° между апофемой и плоскостью основания, площадь основания можно найти как:
S = (4 * a^2) / (2 * tan(180°/4)) = 4a^2 / (2 * tan(45°)) = 4a^2 / 1 = 4a^2,
где a - длина стороны основания пирамиды.
Таким образом, для нахождения объема пирамиды, нам нужно найти площадь основания и умножить ее на высоту, учитывая, что у нас дан угол в 30°, что соответствует тангенсу 1/√3.
S = 4 * (16 / √3)^2 = 4 * (256 / 3) = 341.33 см^2.
Теперь можем найти объем:
V = (1/3) * 341.33 * 16 = 1829.33 см^3.
Для правильной усеченной треугольной пирамиды с основаниями 2 см и 10 см, а также высотой 5 см, объем можно найти по формуле:
V = (1/3) * h * (S1 + S2 + sqrt(S1 * S2)),
где S1 и S2 - площади оснований, h - высота пирамиды.
Площадь основания треугольной пирамиды с основанием 2 см:
S1 = (1/2) * 2 * 5 = 5 см^2.
Площадь основания треугольной пирамиды с основанием 10 см:
S2 = (1/2) * 10 * 5 = 25 см^2.
Теперь можем найти объем:
V = (1/3) * 5 * (5 + 25 + sqrt(5 * 25)) = (1/3) * 5 * (5 + 25 + 5√5) = 50 + 25√5 ≈ 95.71 см^3.
V = (1/3) * S * h,
где S - площадь основания пирамиды, h - высота пирамиды.
Для правильной четырехугольной пирамиды с апофемой 16 см и углом 30° между апофемой и плоскостью основания, площадь основания можно найти как:
S = (4 * a^2) / (2 * tan(180°/4)) = 4a^2 / (2 * tan(45°)) = 4a^2 / 1 = 4a^2,
где a - длина стороны основания пирамиды.
Таким образом, для нахождения объема пирамиды, нам нужно найти площадь основания и умножить ее на высоту, учитывая, что у нас дан угол в 30°, что соответствует тангенсу 1/√3.
S = 4 * (16 / √3)^2 = 4 * (256 / 3) = 341.33 см^2.
Теперь можем найти объем:
V = (1/3) * 341.33 * 16 = 1829.33 см^3.
Для правильной усеченной треугольной пирамиды с основаниями 2 см и 10 см, а также высотой 5 см, объем можно найти по формуле:
V = (1/3) * h * (S1 + S2 + sqrt(S1 * S2)),
где S1 и S2 - площади оснований, h - высота пирамиды.
Площадь основания треугольной пирамиды с основанием 2 см:
S1 = (1/2) * 2 * 5 = 5 см^2.
Площадь основания треугольной пирамиды с основанием 10 см:
S2 = (1/2) * 10 * 5 = 25 см^2.
Теперь можем найти объем:
V = (1/3) * 5 * (5 + 25 + sqrt(5 * 25)) = (1/3) * 5 * (5 + 25 + 5√5) = 50 + 25√5 ≈ 95.71 см^3.
0
·
Хороший ответ
13 мая 2024 18:24
Остались вопросы?
Еще вопросы по категории Геометрия
Площадь поверхности правильной треугольной призмы равна 6. Какой будет площадь поверхности призмы, если все ее ребра увеличить в три раза?...
Найдите сумму углов выпуклого 13 угольника. ПОЙЖАЛУСТА ОЧЕНЬ НАДО,У МЕНЯ НЕ ПОЛУЧАЕТСЯ:(...
Высота правильной призмы ABCDA1B1C1D1 равна 10 см. Сторона её основания равна 12 см. Вычислите периметр сечения призмы плоскостью, содержащей прямую A...
Объем куба равен 8. Найдите площадь его поверхности....
Знайдіть градусну міру кута вписаного в коло якщо відповідний йому центральний кут дорівнює 50° Срочно...