Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Воспользуемся формулой приведения:
cos(pi/2 -x) + cos3x = 0
По формуле преобразования суммы косинусов в произведение:
2cos(pi/4 +x)*cos(pi/4 -2x) = 0
Разбиваем на два уравнения:
cos(pi/4 +x) = 0 и cos(2x- pi/4)=0
pi/4 +x = pi/2 + pi*k 2x- pi/4 = pi/2 +pi*n
x = pi/4 + pik x = 3pi/8 + pi*n/2
Ответ: pi/4 + pik; 3pi/8 + pi*n/2, k,n:Z
cos(pi/2 -x) + cos3x = 0
По формуле преобразования суммы косинусов в произведение:
2cos(pi/4 +x)*cos(pi/4 -2x) = 0
Разбиваем на два уравнения:
cos(pi/4 +x) = 0 и cos(2x- pi/4)=0
pi/4 +x = pi/2 + pi*k 2x- pi/4 = pi/2 +pi*n
x = pi/4 + pik x = 3pi/8 + pi*n/2
Ответ: pi/4 + pik; 3pi/8 + pi*n/2, k,n:Z
0
·
Хороший ответ
13 декабря 2022 14:54
Остались вопросы?
Еще вопросы по категории Алгебра
найти корень уравнения 8 / x=x + 2...
Решить уравнение: 2sin(3x-п/4)=-√2...
В выпуклом четырехугольнике ABCD AB=BC, AD=CD угол В 60 градусов,угол D 110 градусов. Найдите угол A. Ответ дайте в градусах....
Решите уравнение (х-2)(х^2+8х+16)=7(х+4)...
Квадратное уравнение ax^2+bx+c=0 имеет ненулевые корни x_1 и x_2. Запишите квадратное уравнение с корнями 1/x_1 и 1/x_1 (укажите ограничения на коэффи...