Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
27 декабря 2022 07:05
6229
Дан куб АВСДА1В1С1Д1.а) докажите, что прямая ВД1 перпендикулярна плоскости АСВ1. б) Найдите угол между плоскостями АД1С1 и А1Д1С
1
ответ
Ладно, это одна из "любимых" тем - тетраэдр, вписанный в куб. Я напишу решение, но вам придется разбираться и оформлять самостоятельно.
а)
Фигура ACB1B - правильная треугольная пирамида. В основании её равносторонний треугольник ACB1: AC = AB1 = CB1 (диагонали граней куба), и боковые ребра равны между собой BA = BC = BB1; (это просто стороны куба). Это означает, что точка B проектируется на плоскость ACB1 в центр треугольника ACB1 - точку O. (ну, у равностороннего треугольника все центры совпадают, можете выбирать, какой именно центр, но по логике это центр описанной окружности). То есть, BO перпендикулярно плоскости ACB1.
Фигура ACB1D1 - тоже правильная треугольная пирамида, причем у неё равны между собой все ребра (все ребра этой пирамиды - диагонали граней куба). Поэтому D1O перпендикулярно плоскости ACB1; (аналогично предыдущему абзацу).
Поскольку через точку O можно провести только один перпендикуляр к плоскости ACB1, точки B, O, D1 лежат на одной прямой, перпендикулярной плоскости ACB1, что и требовалось доказать.
б)
Легко видеть, что прямая C1D перпендикулярна плоскости A1D1C (в этой плоскости еще и точка B лежит), потому что C1D перпендикулярна D1C и A1D1 (A1D1 перпендикулярная грани CC1D1D). Точно также прямая A1D перпендикулярная плоскости AD1C1 (тоже, кстати, проходящей через точку B).
Поэтому (внимание! это - решение!) угол между плоскостями равен углу между прямыми A1D и C1D.
Поскольку треугольник A1DC1 - равносторонний, искомый угол равен 60°
а)
Фигура ACB1B - правильная треугольная пирамида. В основании её равносторонний треугольник ACB1: AC = AB1 = CB1 (диагонали граней куба), и боковые ребра равны между собой BA = BC = BB1; (это просто стороны куба). Это означает, что точка B проектируется на плоскость ACB1 в центр треугольника ACB1 - точку O. (ну, у равностороннего треугольника все центры совпадают, можете выбирать, какой именно центр, но по логике это центр описанной окружности). То есть, BO перпендикулярно плоскости ACB1.
Фигура ACB1D1 - тоже правильная треугольная пирамида, причем у неё равны между собой все ребра (все ребра этой пирамиды - диагонали граней куба). Поэтому D1O перпендикулярно плоскости ACB1; (аналогично предыдущему абзацу).
Поскольку через точку O можно провести только один перпендикуляр к плоскости ACB1, точки B, O, D1 лежат на одной прямой, перпендикулярной плоскости ACB1, что и требовалось доказать.
б)
Легко видеть, что прямая C1D перпендикулярна плоскости A1D1C (в этой плоскости еще и точка B лежит), потому что C1D перпендикулярна D1C и A1D1 (A1D1 перпендикулярная грани CC1D1D). Точно также прямая A1D перпендикулярная плоскости AD1C1 (тоже, кстати, проходящей через точку B).
Поэтому (внимание! это - решение!) угол между плоскостями равен углу между прямыми A1D и C1D.
Поскольку треугольник A1DC1 - равносторонний, искомый угол равен 60°
0
·
Хороший ответ
29 декабря 2022 07:05
Остались вопросы?
Еще вопросы по категории Геометрия
Меньшая диагональ прямоугольной трапеции перпендикулярна боковой стороне, острый угол трапеции равен 45 градусов, большее основание трапеции равно 8 с...
Каким свойством обладает вертикальные углы? каким свойством обладает смежные углы?...
В кубе 𝐴𝐵𝐶𝐷𝐴1𝐵1𝐶1𝐷1 найдите угол между: 𝐴𝐵 и 𝐴1𝐵1 𝐴𝐵 и 𝐴1𝐵 𝐴𝐵 и 𝐶1𝐶 𝐴𝐵 и 𝐶1𝐵 (𝐴𝐵𝐶) и (𝐵1𝐶1𝐷1) (𝐴𝐵𝐶) и (𝐵1𝐶1𝐵)...
Длина ребра правильного тетраэдра АВСД равна 1 см. Найдите угол между прямыми ДМ и СК, где М- середина ребра ВС , К- середина ребра АВ....
1)Расскажите о практических способах проведения параллельных прямых. 2)Объясните, какие утверждения называются аксиомами.Приведите примеры аксиом. 3)Д...