Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
20 апреля 2023 10:27
331
в треугольнике abc угол c прямой,найти косинус угла б синус угла б, тангенс угла б если аб=3корень3 бс=4корень3
1
ответ
Для решения задачи нам нужно использовать теорему Пифагора и соотношения между сторонами и углами прямоугольного треугольника.
Из теоремы Пифагора мы знаем, что:
$AC^2 = AB^2 + BC^2$
Поскольку угол C прямой, то мы можем использовать тригонометрические соотношения для прямоугольных треугольников:
$\cos B = \frac{AB}{AC}$
$\sin B = \frac{BC}{AC}$
$\tan B = \frac{BC}{AB}$
Теперь нам нужно найти длину стороны AC. Мы можем использовать соотношение между сторонами и углами прямоугольного треугольника:
$\tan C = \frac{BC}{AB}$
$\tan 90^\circ = \infty$
Поэтому $\tan C$ не определен.
Из теоремы Пифагора мы знаем, что:
$AC^2 = AB^2 + BC^2$
$AC^2 = (3\sqrt{3})^2 + (4\sqrt{3})^2$
$AC^2 = 9 \cdot 3 + 16 \cdot 3$
$AC^2 = 75$
$AC = 5\sqrt{3}$
Теперь мы можем найти косинус, синус и тангенс угла B:
$\cos B = \frac{AB}{AC} = \frac{3\sqrt{3}}{5\sqrt{3}} = \frac{3}{5}$
$\sin B = \frac{BC}{AC} = \frac{4\sqrt{3}}{5\sqrt{3}} = \frac{4}{5}$
$\tan B = \frac{BC}{AB} = \frac{4\sqrt{3}}{3\sqrt{3}} = \frac{4}{3}$
Ответ:
$\cos B = \frac{3}{5}$
$\sin B = \frac{4}{5}$
$\tan B = \frac{4}{3}$
Из теоремы Пифагора мы знаем, что:
$AC^2 = AB^2 + BC^2$
Поскольку угол C прямой, то мы можем использовать тригонометрические соотношения для прямоугольных треугольников:
$\cos B = \frac{AB}{AC}$
$\sin B = \frac{BC}{AC}$
$\tan B = \frac{BC}{AB}$
Теперь нам нужно найти длину стороны AC. Мы можем использовать соотношение между сторонами и углами прямоугольного треугольника:
$\tan C = \frac{BC}{AB}$
$\tan 90^\circ = \infty$
Поэтому $\tan C$ не определен.
Из теоремы Пифагора мы знаем, что:
$AC^2 = AB^2 + BC^2$
$AC^2 = (3\sqrt{3})^2 + (4\sqrt{3})^2$
$AC^2 = 9 \cdot 3 + 16 \cdot 3$
$AC^2 = 75$
$AC = 5\sqrt{3}$
Теперь мы можем найти косинус, синус и тангенс угла B:
$\cos B = \frac{AB}{AC} = \frac{3\sqrt{3}}{5\sqrt{3}} = \frac{3}{5}$
$\sin B = \frac{BC}{AC} = \frac{4\sqrt{3}}{5\sqrt{3}} = \frac{4}{5}$
$\tan B = \frac{BC}{AB} = \frac{4\sqrt{3}}{3\sqrt{3}} = \frac{4}{3}$
Ответ:
$\cos B = \frac{3}{5}$
$\sin B = \frac{4}{5}$
$\tan B = \frac{4}{3}$
0
·
Хороший ответ
20 апреля 2023 10:30
Остались вопросы?
Еще вопросы по категории Геометрия
2 стороны относятся как 5:3 угол между ними 120 градусов, найти третью сторону если периметр = 45см....
Придумать задачу про объем конуса с жизненным уклоном...
Сфера задана уравнением Х^2+У^2+Z^2-2y-4z=4 А) найти координаты центра и радиус сферы...
Чему равен объем правильной треугольной призмы со стороной основания a и расстоянием от вершины одного основания до противолежащей стороны другого осн...
1. Объясните,что такое луч. Как обозначаются лучи? 2.Какая фигура называется углом? Объясните,что такое вершина и стороны угла. 3.Какой угол называет...