Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для решения этой задачи нам понадобится теорема косинусов.
Мы знаем длины сторон BC и AC, а также угол C. Давайте обозначим сторону AB как x.
Теорема косинусов гласит:
c^2 = a^2 + b^2 - 2ab * cos(C),
где c - сторона противолежащая углу C, а a и b - остальные стороны.
Подставляя известные значения, получаем:
x^2 = (3√2)^2 + 6^2 - 2 * 3√2 * 6 * cos(135°).
Вычисляем:
x^2 = 18 + 36 - 36√2 * (-√2/2) = 54 + 18 = 72.
Извлекаем квадратный корень:
x = √72 = 6√2.
Таким образом, длина стороны AB равна 6√2 см.
Мы знаем длины сторон BC и AC, а также угол C. Давайте обозначим сторону AB как x.
Теорема косинусов гласит:
c^2 = a^2 + b^2 - 2ab * cos(C),
где c - сторона противолежащая углу C, а a и b - остальные стороны.
Подставляя известные значения, получаем:
x^2 = (3√2)^2 + 6^2 - 2 * 3√2 * 6 * cos(135°).
Вычисляем:
x^2 = 18 + 36 - 36√2 * (-√2/2) = 54 + 18 = 72.
Извлекаем квадратный корень:
x = √72 = 6√2.
Таким образом, длина стороны AB равна 6√2 см.
0
·
Хороший ответ
18 сентября 2024 13:48
Остались вопросы?
Еще вопросы по категории Геометрия
Теорема о площади треугольника. Доказательство формулы площади треугольника. С рисунком. И лучше на бумажном листе....
Очень срочно чем горные ледники отличаются от покровных?...
Задание 3. ABCA1B1C1 – наклонная призма, в основании которой лежит правильный треугольник ABC, AB = 63.jpg см. Вершина A1 верхнего основания призмы пр...
Найдите скалярное произведение вектора а умножить на вектор б,если модуль а=3,модуль б=4,угол(вектор а;вектор б)=120 градусов...
Какой угол называется вписанным?Сформулируйте и докажите теорему о вписаном угле...