Лучшие помощники
10 декабря 2022 09:27
514

Диагонали равнобедренной трапеции точкой пересечения делятся в отношении 2:5.Вычисли периметр трапеции, меньшее основание которой равно высоте и равно 12 см.
помогитееееееееееееее

1 ответ
Посмотреть ответы
В трапеции ABCD диагонали пересекаются в точке F и делятся в отношении 2:5. Рассмотрим два треугольника:
ΔBCF и ΔAFD/ Они - подобны. Угол BCF= углу AFD как вертикальные, Диагонали равны в равнобедренной трапеции и делятся на пропорциональные отрезки. Проведем через точку F высоту трапеции, обозначим точку пересечения с верхним основанием -N, с нижним основанием -L. Запишем пропорцию для этих подобных треугольников:
BC:NF=AD:FL или BC:AD=NF:AD, из условия NF:AD=2:5
12:AD=2:5, AD=12·5/2=30cm.
Чтобы вычислить боковую сторону из вершины B опустим высоту и точку пересечения с основанием AD обозначим
через K. Вычислим отрезок AK .
AK=(AD-BC):2=(30-12):2=18:2=9cm
Из треугольника ABK по теореме Пифагора вычислим AB.
AB²=AK²+BK²=9²+12²=81+144=225
AB=15 cm.
Вычислим периметр трапеции: AB+BC+CD+AD= =15+12+15+30=72 cm
Ответ: P=72 cm
0
·
Хороший ответ
12 декабря 2022 09:27
Остались вопросы?
Найти нужный